39 research outputs found

    Upgrading the Local Ergodic Theorem for planar semi-dispersing billiards

    Full text link
    The Local Ergodic Theorem (also known as the `Fundamental Theorem') gives sufficient conditions under which a phase point has an open neighborhood that belongs (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of ergodicity for billiards and, more generally, for smooth hyperbolic maps with singularities. However the proof of that theorem relies upon a delicate assumption (Chernov-Sinai Ansatz), which is difficult to check for some physically relevant models, including gases of hard balls. Here we give a proof of the Local Ergodic Theorem for two dimensional billiards without using the Ansatz.Comment: 17 pages, 2 figure

    The characteristic exponents of the falling ball model

    Full text link
    We study the characteristic exponents of the Hamiltonian system of nn (2\ge 2) point masses m1,,mnm_1,\dots,m_n freely falling in the vertical half line {qq0}\{q|\, q\ge 0\} under constant gravitation and colliding with each other and the solid floor q=0q=0 elastically. This model was introduced and first studied by M. Wojtkowski. Hereby we prove his conjecture: All relevant characteristic (Lyapunov) exponents of the above dynamical system are nonzero, provided that m1mnm_1\ge\dots\ge m_n (i. e. the masses do not increase as we go up) and m1m2m_1\ne m_2

    Proving The Ergodic Hypothesis for Billiards With Disjoint Cylindric Scatterers

    Full text link
    In this paper we study the ergodic properties of mathematical billiards describing the uniform motion of a point in a flat torus from which finitely many, pairwise disjoint, tubular neighborhoods of translated subtori (the so called cylindric scatterers) have been removed. We prove that every such system is ergodic (actually, a Bernoulli flow), unless a simple geometric obstacle for the ergodicity is present.Comment: 24 pages, AMS-TeX fil

    Heat transport in stochastic energy exchange models of locally confined hard spheres

    Full text link
    We study heat transport in a class of stochastic energy exchange systems that characterize the interactions of networks of locally trapped hard spheres under the assumption that neighbouring particles undergo rare binary collisions. Our results provide an extension to three-dimensional dynamics of previous ones applying to the dynamics of confined two-dimensional hard disks [Gaspard P & Gilbert T On the derivation of Fourier's law in stochastic energy exchange systems J Stat Mech (2008) P11021]. It is remarkable that the heat conductivity is here again given by the frequency of energy exchanges. Moreover the expression of the stochastic kernel which specifies the energy exchange dynamics is simpler in this case and therefore allows for faster and more extensive numerical computations.Comment: 21 pages, 5 figure

    Statistical problems of the elementary Gaussian processes : II. Statistics and related problems

    Get PDF

    Approximating multi-dimensional Hamiltonian flows by billiards

    Full text link
    Consider a family of smooth potentials VϵV_{\epsilon}, which, in the limit ϵ0\epsilon\to0, become a singular hard-wall potential of a multi-dimensional billiard. We define auxiliary billiard domains that asymptote, as ϵ0\epsilon\to0 to the original billiard, and provide asymptotic expansion of the smooth Hamiltonian solution in terms of these billiard approximations. The asymptotic expansion includes error estimates in the CrC^{r} norm and an iteration scheme for improving this approximation. Applying this theory to smooth potentials which limit to the multi-dimensional close to ellipsoidal billiards, we predict when the separatrix splitting persists for various types of potentials

    Some remarks on statistical data processing

    Get PDF

    Recurrence and higher ergodic properties for quenched random Lorentz tubes in dimension bigger than two

    Full text link
    We consider the billiard dynamics in a non-compact set of R^d that is constructed as a bi-infinite chain of translated copies of the same d-dimensional polytope. A random configuration of semi-dispersing scatterers is placed in each copy. The ensemble of dynamical systems thus defined, one for each global realization of the scatterers, is called `quenched random Lorentz tube'. Under some fairly general conditions, we prove that every system in the ensemble is hyperbolic and almost every system is recurrent, ergodic, and enjoys some higher chaotic properties.Comment: Final version for J. Stat. Phys., 18 pages, 4 figure

    Etűdök a biliárdról

    No full text
    corecore